US researchers have achieved a new milestone in 3D printing technology by demonstrating an approach to additively manufacture ceramics that overcomes the limits of traditional ceramic processing and enables high temperature, high strength ceramic components.

Based in Malibu, California, HRL is a corporate research & development laboratory owned by The Boeing Company and General Motors, specialising in research into sensors and materials, information and systems sciences, applied electromagnetics and microelectronics. HRL’s Senior Chemical Engineer Zak Eckel and Senior Chemist Dr Chaoyin Zhou invented a resin formulation that can be 3D printed into parts of virtually any shape and size.

The printed resin can then be fired, converting it into a high-strength, fully dense ceramic. The resulting material can withstand ultra-high temperatures in excess of 1,700 degrees Celsius and exhibits strength 10 times higher than similar materials.

Ceramics are much more difficult to process than polymers or metals because they cannot be cast or machined easily. Traditionally ceramic parts are consolidated from powders by sintering, which introduces porosity and limits both achievable shapes and final strength.

“With our new 3D printing process we can take full advantage of the many desirable properties of this silicon oxycarbide ceramic, including high hardness, strength and temperature capability as well as resistance to abrasion and corrosion,” says Program Manager Dr Tobias Schaedler.

The novel process and material could be used in a wide range of applications from large components in jet engines and hypersonic vehicles, to intricate parts in microelectromechanical systems and electronic device packaging.